OVERVIEW

California’s Earthquake Early Warning (EEW) system utilizes a
sparse network of seismic monitoring stations to detect and fore-
cast the severity of earthquakes that occur across the state. How-
ever, current methods for predicting the spatiotemporal effects of
an earthquake are slow, tend to propagate errors in initial measure-
ments, and are generally inaccurate.

In this project, a collaboration with the Ellsworth Lab, we explore
the use of recurrent networks to achieve fast spatiotemporal infer-
ence times and accurate forecasting of an earthquake’s progression.

DATASET

e 35,680 earthquakes across 15 stations in the California Integrated
(CI) Seismic Network.

e Events from the Jun - Sept 2019 earthquake swarm in the Ridge-
crest region of Southern California.

e Raw data is composed of accelerometer readings at 100Hz.

e Subsample data and smooth by calculating average magnitude of
acceleration at each second. One earthquake is 60s.

Figure 1: Left: Map of stations in the Ridgecrest area. Project focuses on red
stations. Right: Distribution of earthquakes from June 1 - Sept 30, 2019.
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Figure 2: Left: Example of an earthquake propagating over time. Right:
Subsampling of earthquake accelerometer data.
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METHODS

Model Inputs: Earthquake broken down into ¢-second sliding win-
dows of mag data from 15 stations.

Model Outputs: The ith t-second window is used to predict the
magnitude of acceleration for the i +t 4 kth timestep (note: for these
results we used k = 1).

Data Normalization: Correct for large variance in earthquake read-
ings by normalizing magnitudes.

Class Balancing: Correct for imbalance between small and large
earthquakes by upsampling large earthquakes.

Model Architecture: Three-layer LSTM (depicted below)

Loss Function: Mean Absolute Error: = >~ | — y|

Output: t + kth mag data for 15 stations: .., € R'®
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Figure 3: DeepTremor three-layer spatiotemporal LSTM architecture

ANALYSIS
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Figure 4: Our dataset contains significant imbalance of magnitudes.

Log-Magitude (Richter) | MAE | % MAE
m <1 2.53 4.38
1<m<3 6.08 2.86
3<m<5H 140.43 2.73
5<m 5723.29 2.28

Table 1: MAE values for different classes of earthquakes, Overall: 3.7%

DEEPTREMOR: CALIFORNIAN EARTHQUAKE PROJECTION
WITH DEEP GENERATIVE SPATIOTEMPORAL RNNS

RESULTS

Quantitative comparison between baseline and different loss functions
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Figure 5: Left: Comparison of baseline vs MAE optimizer prediction on one
future timestep. Right: Comparison of error rates of different loss functions.
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Figure 6: Example of a model prediction. Solid gray = earthquake history,
dotted blue = actual, dotted red = predicted

CONCLUSION & FUTURE WORK

Conclusions:

e Deep spatiotemporal RNNs achieve reasonable accuracy with
negligible latency

e RNNs offer a viable alternative to numerical projection methods.

Future Work:

e Project forward multiple time steps

e Deep spatial interpolation to approximate numerical methods

e [ocale-agnostic earthquake projection
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